Rheology of Earth Materials :
Closing the gap between timescales in the laboratory and in the mantle

Publications

  • M. Coulombier, P. Baral, A. Orekhov, R. Dohmen, J.P. Raskin, T. Pardoen, P. Cordier, H. Idrissi (2024) On-chip very low strain rate rheology of amorphous olivine films. Acta Materialia, 266, 119693, https://doi.org/10.1016/j.actamat.2024.119693
  • J. Furstoss, P. Hirel, P. Carrez, K. Gouriet, V. Meko-Fotso & P. Cordier (2024) Structures and energies of twist grain boundaries in Mg2SiO4 forsterite. Computational Materials Science, 233, 112768, https://doi.org/10.1016/j.commatsci.2023.112768
  • S. Demouchy, A. Mussi, T. Weidner, E. Gardes & P. Cordier (2024) Dislocations in naturally deformed olivine: Example of a mylonitic peridotite. Physics of the Earth and Planetary Interiors, 346, 107125,  https://doi.org/10.1016/j.pepi.2023.107125
  • T. Weidner, V. Taupin, S. Demouchy, K. Gouriet, A. Guitton, P. Cordier & A. Mussi (2024) From Electron Tomography of Dislocations to Field Dislocation Mechanics: Application to Olivine. Modelling and Simulation in Materials Science and Engineering, 32, 015004, https://doi.org/10.1088/1361-651X/ad0a42
  • S. Demouchy, M. Thieme, F. Barou, B. Beausir, V. Taupin & P. Cordier (2023) Dislocation and disclination densities in experimentally deformed polycrystalline olivine. European Journal of Mineralogy, 35, 219–242, https://doi.org/10.5194/ejm-35-219-2023
  • P. Hirel, J. Furstoss, P. Carrez (2021) A critical assessment of interatomic potentials for modelling lattice defects in forsterite Mg2SiO4 from 0 to 12 GPa, Physics and Chemistry of Minerals, 48, 12, https://doi.org/10.1007/s00269-021-01170-6
  • P. Baral, A. Orekhov, R. Dohmen, M. Coulombier, J.-P. Raskin, P. Cordier H. Idrissi & T. Pardoen (2021) Rheological properties of amorphous olivine thin films measured by nanoindentation. Acta Materialia, 219, 117257, https://doi.org/10.1016/j.actamat.2021.117257
  • A. Mussi, P. Carrez, K. Gouriet, B. Hue & P. Cordier (2021) 4D Electron Tomography of Dislocations Undergoing Electron Irradiation. Comptes Rendus Physique “Plasticity and Solid State Physics”, 22 (S3), 67-81, https://doi.org/10.5802/crphys.80
  • S. Mahendran, P. Carrez, P. Cordier (2021) The core structure of screw dislocations with [001] Burgers vector in Mg2SiO4 olivine. Comptes Rendus Physique “Plasticity and Solid State Physics”, 22 (S3), 7-18, https://doi.org/10.5802/crphys.27
  • M. Landeiro Dos Reis, P. Carrez & P. Cordier (2021) On the interaction dislocation/vacancy in magnesium oxide: Insights from atomistic simulations and elasticity theory. Physical Review Materials, 5, 063602. https://doi.org/10.1103/PhysRevMaterials.5.063602
  • A. Mussi, A. Addad & F. Onimus (2021) Dislocation electron tomography: a technique to characterize the dislocation microstructure evolution in zirconium alloys under irradiation, Acta Materialia, 213, 116964. https://doi.org/10.1016/j.actamat.2021.116964
  • V. Samae, P. Cordier, S. Demouchy, C. Bollinger, J. Gasc, S. Koizumi, A. Mussi, D. Schryvers & H. Idrissi (2021) Stress-induced amorphization triggers deformation in the lithospheric mantle. Nature 591, 82–86. https://doi.org/10.1038/s41586-021-03238-3
  • A. Mussi, J. Gallet, O. Castelnau & P. Cordier (2021) Application of electron tomography of dislocations in beam-sensitive quartz to the determination of strain components. Tectonophysics, 803, 228754. https://doi.org/10.1016/j.tecto.2021.228754
  • O. Castelnau, K. Derrien, S. Ritterbex, P. Carrez, P. Cordier & H. Moulinec (2020) Multiscale modeling of the effective viscoplastic behavior of Mg2SiO4 wadsleyite: bridging atomic and polycrystal scales. Comptes Rendus Mécanique, 348(10-11), 827-846. https://doi.org/10.5802/crmeca.61.
  • P. Hirel, P. Carrez & P. Cordier (2020) Ferroelasticity in MgSiO3 bridgmanite: assessing the structure and mobility of (-110) twin walls with atomic-scale simulations. Scripta Materialia, 188, 102-106. https://doi.org/10.1016/j.scriptamat.2020.07.016
  • S. Ritterbex, P. Carrez & P. Cordier (2020) Deformation across the mantle transition zone: A theoretical mineral physics view. Earth and Planetary Science Letters, 547, 116438. https://doi.org/10.1016/j.epsl.2020.116438
  • H. Idrissi, V. Samaee, G. Lumbeeck, T. van der Werf, T. Pardoen, D. Schryvers & P. Cordier (2020) In Situ Quantitative Tensile Testing of Antigorite in a Transmission Electron Microscope. Journal of Geophysical Research: Solid Earth, 125, e2019JB018383. https://doi.org/10.1029/2019JB018383
  • A. Addad, P. Carrez, P. Cordier, D. Jacob, S-I Karato, A. Mohiuddin A. Mussi, B.C. Nzogang, P. Roussel & A. Tommasi (2019) Anhydrous Phase B: Transmission Electron Microscope Characterization and Elastic Properties. Geochemistry, Geophysics, Geosystems, 20(8), 4059-4072. https://doi.org/10.1029/2019GC008429, Supporting information.

Related publications:
RheoMan project:

  • B.C. Nzogang, M. Thieme, A. Mussi, S. Demouchy & P. Cordier (2020) Characterization of recovery by sub-grain and grain boundary migration in experimentally deformed polycrystalline olivine. European Journal of Mineralogy, 32, 13-26, https://doi.org/10.5194/ejm-32-13-2020
  • S. Mahendran, P. Carrez, P. Cordier (2019) On the glide of [100] dislocations and the origin of “pencil glide” in Mg2SiO4 olivine. Philosophical Magazine, 99(22), 2751-2769, doi.org/10.1080/14786435.2019.1638530

 

The ebook describing the RheoMan project can be downloaded freely (click on the cover and go to the bottom of the page; it is also available on HAL)

Acknowledgements of the TimeMan project

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787198 – TimeMan.